Advancements in Peripheral Vascular Disease (Peripheral Artery Disease and Venous Disease)

Karthik Gujja, MD, MPH, FACC, FACP

Assistant Director of Endovascular Services Cardiovascular Institute Mount Sinai Medical Center

Angiosome Theory

Six angiosomes of the foot and ankle originate from the three arteries.

Strategy for BTK Angioplasty based on Angiosome Concept

Method of Revasc	Appropriate Angiosome Treated	Boundary Angiosome Treated
PTA Alexandrescu et al. J Endovasc Ther 2010;15:580	94% healed	59% healed
Bypass Neville et al. Ann Vasc Surg 2009;23:367	91% healed	62% healed

PAD : Background

- Occurs in approximately 1/3 of patients
 - ✓ Over age 70
 - ✓ Over age 50 who smoke or have DM
- Strong association with CAD
 - ✓ Obvious associated risk of stroke, MI, cardiovascular death
- Progressive disease in 25% with progressive intermittent claudication/limb threatening ischemia
- Outcomes
 - ✓ Impaired QoL
 - ✓ Limb Loss
 - ✓ Premature Mortality

Risk Factors for PVD: Framingham Heart Study

Mount Sinai AHEART

Outcomes in PVD Patients

Diabetics:Tragic "Rule of 15"

- 15% of diabetes _____ Foot ulcer in lifetime patients
- 15% of foot ulcers Osteomyelitis
- 15% of foot ulcers Amputation

Diabetics: Tragic "Rule of 50"

- 50% of amputations
- 50% of patients

50% of patients

Transfemoral/ transtibial level 2^{nd} amputation in ≤ 5 years Die in ≤ 5 years

Clinical Care of the Diabetic Foot, 2005

The Most Important Aspect of the Diagnostic Evaluation of PAD

History

- Location of Symptoms
- Description of Discomfort
- Exacerbating/Ameliorating Characteristics
- Reproducible Symptoms

Fontaine Classification

- I Asymptomatic
- Intermittent claudication
 - **a.** > 200 meters
 - **b.** ≤ 200 meters
- III Rest pain
- IV Necrosis, gangrene, or non-healing wounds

Pentecost MJ, Circulation 89:51,

Suggested Algorithm for Work-up

Interpretation of ABI

- <u>></u>0.90 Normal
- $\sim \geq 1.30$ Calcified Arteries
- $\ge 0.70 <0.90$ Mild PAD
- $\ge 0.40 < 0.70$ Moderate PAD
- -.40 Severe PAD

Effect of Cilostazol on walking distance in patients with intermittent Claudication

Hiatt WR N Engl J Med 2001; 344: 1608 - 1621

Infrainguinal Surgical Revascularization

Results of Autogenous Infrainguinal Reconstruction

Five-Year Cumulative Rates Graft Patency

No. of Limbs	Operative Mortality (%)	Primary (%)	Secondary (%)	Limb Salvage (%)	Survival (%)
3005	2	70	81	90	54

Infrainguinal Arterial Surgical Revascularization

Infrainguinal Revascularization with PTFE

Infrainguinal Surgical Revascularization

- Complications
 - ✓ Mortality 2-5%
 - ✓Hemorrhage <2%
 - ✓ Graft Thrombosis 2-7%
 - ✓ Wound Infection 8-19%

Basil Trial even concluded Endo better first..

- 452 patients with CLI to strategy of bypass first or angioplasty first
- Attempted allocated treatment
 - 86% (195/228) bypass vs 96% (216/224) angioplasty
- No difference in amputation-free survival at 6 months
 - Unadjusted hazard ratio 1.07 95% CI [0.72-1.6]
 - Adjusted hazard ratio 0.73 95% CI [0.49-1.07]
- No difference in health-related QOL
- Hospital costs one-third higher with bypass first
- Later (after 2 years) results favored bypass
- Conclusion: endovascular first strategy for CLI
- 7-year f/u: no cost benefit

Endovascular Management of Limb Ischemia

Endovascular Procedures

- Percutaneous Transluminal Angioplasty (PTA)
- Stenting
- Atherectomy
 - ✓ Directional
 - ✓ Laser
- "Specialized" Angioplasty Devices
 - ✓ Cutting Balloon
 - ✓ Cryoplasty

Current SFA Endovascular Intervention Options in the US

Percutaneous Transluminal Angioplasty (PTA)

Efficacy

	Technical Success Rate	Clinical Succes s Rate	Primary 1- Year Patency	Assiste d 5-Year Patency	Limb Salvage Rate	Major Comp. Rate	Patients /Mean Follow
Faglia, Grazziani , et al (2005)	99%			88%	97%	3%	993/26 months
Kudo, Ahn (2004)	96%	93%		76%	89%	2%	111/15 months
Mousa, Rhee, et al (2005)	98%		89%		97%	9%	66/6 months

9. Faglia, Paolo, Clerci, Cleressi, Graziani, et al. Peripheral Angioplasty as the First-choice Revascularization Procedure in Diabetic Patients with Critical Limb Ischemia: Prospective Study of 993 Consecutive Patients Hospitalized and Followed Between 1999 and 2003. *Eur J Vasc Endovasc Surg.* 2005;29:620-627.

10. Kudo, Ahn, Chandra. The effectiveness of percutaneous transluminal angioplasty for the treatment of critical limb ischemia: A 10-year experience. *The Western* 2005;Sep 11-14, 2004.

Stents

- Nitinol Self Expanding Stents
- Covered stents
- Zilver PTX Drug Eluting Stents
- Supera stents

Endovascular Stent

Flexible Delivery safely Non-compressible.

Stenting

Treatment

- Placement of metallic tube in damaged artery to support and maintain lumen
- May be bare metallic, PTFE, or drug-eluting

Best Use

- Primary therapy for focal Iliac and diffuse SFA lesions
- "Bail-out" for infrapopliteal PTA interventions

Efficacy

- 95% technical success rate¹²
- 88% 1 and 3 year primary patency rate¹²

Pre Intervention: Total Occlusion SFA CTO

Post Intervention SFA Revascularized

Zilver PTX Device Description

• Zilver Flex® Stent Platform

- ✓ Nitinol stent
- Designed for the superficial femoral artery (SFA)
- Outer surface coated with paclitaxel
 - \checkmark 3 µg/mm² dose density
 - ✓ No polymer or binder
 - Same active ingredient as Taxus coronary DES

24-Month Freedom From TLR Provisional Zilver PTX vs. BMS

Long InStent Occlusion FemPop

SUPERA stent

- Interwoven self-expanding nitinol stent
- Six pairs of super-elastic nitinol wires which are interwoven in a helical pattern in a closed cell geometry
- 1) Radial strength
- 2) Flexibility and Durability
- 3) Conformability
- 4) Kink, Crush and Fracture resistant

Supera vs. Other

Clinical Outcomes in Calcification at 3 yrs

Mount Sinai-A**HEART**

Atherectomy

•More data but still none randomized

Still Ooh and aah factor for physician and patients 'Nothing left behind"

DEFINITIVE LE Results

DIABETICS VS. NON-DIABETICS

12-month Primary Patency (%)

Diabetic patients show a more positive response to directional atherectomy than to other therapies.

PRIMARY PATENCY AT 12 MONTHS

Overall, primary patency results are comparable in diabetics vs. non-diabetics when treating short, medium, and long lesions.

Results Across Different Segments

SFA	Subjects	Lesions	Baseline Stenosis	Mean Lesion Length (cm)	Primary Patency (PSVR ≤ 2.4)
< 4 cm	130	145	66.2	2.3	77.9%
4 - 9 cm	194	206	69.4	6.5	83.0%
10+ cm	182	184	79.8	14.6	65.4%
Popliteal					
< 4 cm	51	41	66.8	2.2	84.4%
4 - 9 cm	54	54	78.9	6.5	75.4%
10+ cm	18	18	89.6	13.1	64.9%
Infrapopliteal					
< 4 cm	29	34	65.1	1.8	89.6%
4 - 9 cm	42	47	74.8	6.2	89.4%
10+ cm	12	12	80.9	13.4	90.9%

Sinai - AHEART

Impact on CLI

LIMB SALVAGE AND WOUND HEALING

IN.PACT SFA Trial Overview

150 subjects enrolled at 13 EU sites Sep 2010 - Apr 2011

IN.PACT SFA II

81 subjects enrolled at 44 US sites Apr 2012 - Jan 2013

- Prospective
- Multicenter
- Randomized (2:1)
- Single-blinded
- Subjects followed up to 5 years

- Independent and blinded Duplex Ultrasound Core Lab,¹ Angiographic Core Lab,² and Clinical Events Committee³
- Independent Data Safety Monitoring Board³
- External monitoring with 100% source data verification

- VasCore DUS Core Laboratory, Boston, MA, US
 SynvaCor Angiographic Core Laboratory, Springfield, IL, US
- 3. CEC and DSMB services provided by HCRI, Boston, MA, US

IN.PACT SFA Trial Design

IN.PACT SFA

Aggregate dataset from Phase I and II

Primary Endpoints:

•Efficacy³: 12-month Primary Patency
•Freedom from clinically-driven TLR and duplex ultrasound derived restenosis (PSVR ≤2.4)
•Safety⁴: 30-day device/procedure death, 12-month amputation, 12-month clinically-driven TVR

Key Inclusion Criteria:

•Rutherford 2-3-4
•SFA and proximal popliteal
•Lesion length 4-18 cm
•Total occlusion ≤10 cm

1. With symptoms of claudication and/or rest pain and angiographic evidence of SFA/PPA stenosis

2. Pre-dilatation mandatory for all subjects in IN.PACT SFA II phase only

3. Primary Efficacy Analysis on all ITT non-stented subjects based on superiority assumption of DCB vs. PTA

4. Primary Safety Analysis on all ITT non-stented subjects based on non-inferiority of DCB vs. PTA

IN.PACT SFA 12-Month Efficacy Outcomes

Primary Patency Kaplan Meier (All ITT)¹

Clinically-Driven Target Lesion Revascularization (CD-TLR)²

1. Primary patency is defined as freedom from clinically-driven TLR and freedom from restenosis as determined by DUS PSVR ≤2.4 2. Clinically-driven TLR defined as any re-intervention due to symptoms or drop of ABI/TBI of >20% or >0.15 compared to post-procedure ABI/TB

Potential advantages of DEB c/w DES

- Greater/more uniform drug delivery per mm² of surface area=greater efficacy?
- Lack of ongoing drug and polymer
 - ✓ Less/shorter inflammation
 - ✓ More rapid endothelialization
 - ✓ Less late thrombosis
 - ✓ Shorter/less intense DAPT
- Lack of permanent stent prosthesis
 - \checkmark Less provocation of neointimal formation
- Use in "stent-disadvantaged" zones
 - ✓ Small vessels, bifurcations, ISR, infra-inguinal
- Ease of use

Summary of Management of Non-CTO SFA Disease

Treatment Strategies	Focal Lesions	Calcified Lesions	Diffuse Lesions	
Standard Balloon PTA	Can be used as Primary therapy Can be used to prime the le Atherectomy (Avoid before		e lesion or after re Directional, Orbital	
Cutting Balloon PTA		or Rotational Atherectomy)		
Atherectomy	Directional (SilverHawk)	Directional, Orbital & Rotational	Directional, Orbital, Rotational & Laser	
Stenting	For residual stenosis or flow limiting dissection	Supera stents should be considered in moderate to heavy calcified lesions	Focal stenting vs. Zilver PTX vs. Supera. Ostial lesions should be st	
Drug Coated Balloon Angioplasty	Can be considered in lesions longer than 30mm	Better results with directional atherectomy	Should be strongly considered	

Sinai_AHEART

Critical Limb Ischemia/ Limb Salvage

- 71 yo female
- —HTN
- ↑ Cholesterol
- Prior stroke
- —Atrial fibrillation
- Non-diabetic

Recommended treatment: lower limb amputation

Critical Limb Ischemia/ Limb Salvage

3 mos post plaque excision with no skin graft, no prosthesis and no pain meds

> Mount Sinai-AHEART

Endovascular Repair of Aortoiliac Disease

Tibial CTO with PTA

Angiogram Patent Peroneal/Occluded AT

Direct Access to DP at foot

Retrograde Recanalization

Final Result

So you decide....

- Limb salvage rates for PTA, Laser, Cryoplasty, Silverhawk, DES, DEB are ALL greater than 85%, many 95%
- And the RIGHT artery and MORE than one artery can be treated to the correct angiosome

You Are Never Too Old To Walk!

Peripheral Angioplasty

- PAD progresses in severity
- Surgery has been the "Old Standard"
- Advantages of using interventional procedures over surgery to treat PAD
 - \checkmark Avoids complications of general anesthesia
 - ✓ Avoids wound healing complications
 - ✓ Less systemic stress
 - ✓ Early recovery and ambulation
 - ✓ Procedure may be repeated more readily than surgery
 - ✓ Preserves future surgical intervention options
- Generally, all a patient needs is a few months of good flow for foot survival or salvage

25 Million people suffer from venous reflux disease, the underlying cause for most varicose veins

Images courtesy of Paul McNeill, MD and Rajabrata Sarkar, MD

Prevalence and Etiology of Venous Insufficiency

Venous reflux disease is 2x more prevalent than coronary heart disease (CHD) and 5x more prevalent than peripheral arterial disease (PAD)¹

Prevalence and Etiology of Venous Insufficiency

*Of the estimated 25 million people with symptomatic superficial venous reflux*¹ :

- Only 1.7 million seek treatment annually²
- Over 23 million go untreated

Prevalence by Age and Gender^{3,4}

<u>Age</u>	<u>Female</u>	<u>Male</u>
20 - 29	8%	1%
40 - 49	41%	24%
60 - 69	72%	43%

Systemíc Reflux ín Venous Ulceratíon

Photos courtesy of Steven A. Kaufman, MD.

Sources of Reflux in				
Venous Ulcer Patients ⁸				
Superficial	Perforating	Deep		
79%	63%	50%		

Incompetent perforators found in 63% of venous ulcer patients

Comprehensive care treats all sources of reflux

Pathophysiology of Venous Insufficiency

Healthy Vein Valves & Correct Blood Flow Damaged Vein Valve & Incorrect Blood Flow

Perforating Veins and Reflux

- Perforator valves maintain one-way flow from superficial to deep veins
- Perforator valve failure causes:
 - Higher venous pressure and GSV/branch dilation
 - Increasing pressure results in GSV valve failure
 - Additional vein branches become varicose
 - Further GSV incompetence and dilation

Risk Factors and Symptoms of Venous Insufficiency

Risk factors of venous insufficiency:
• Gender
• Age
• Heredity
Pregnancy
 Standing occupation
• Obesity

- Prior injury or surgery
- Sedentary lifestyle

Symptoms of venous insufficiency:

- Leg pain, aching, or cramping
- Burning or itching of the skin
- Leg or ankle swelling
- "Heavy" feeling in legs
- Skin discoloration or texture changes
- Open wounds or sores
- Restless legs
- Varicose Veins

SMALL SAPHENOUS VEIN ANATOMY

Anterolateral View

- The SSV originates at the lateral heel/ankle
- Distally, the SSV lies superficial to the fascial planes
- The sural nerve lies very close to the SSV from the lateral ankle to mid-calf

Posterior View

- From its origin, the SSV continues up the posterior calf
- At its mid-1/3 segment, the SSV lies between the superficial and deep fascial planes
- Proximally, the SSV and sural nerve dive beneath the deep fascia
- The SSV empties into the popliteal vein in the region of the popliteal fossa

Mount Sinai∽

Rt. GSV Reflux study

RFA *Design and Mode of Action*

- RF Energy heats Catheter tip (7cm heating element) to 120° C
- Conductive Heat Transfer from heating element to vein wall achieves temperatures of 85-120° C

 Vein wall heating causes collagen vein wall contraction and thrombosis

 Catheter tip positioned 2cm distal to the saphenofemoral junction. Tumescent infiltration is administered.

 7 cm vein segment treated all at once during 20-second treatment cycle. Additional vein segments treated serially.

 Catheter shalt markings allow fast and accurate catheter re-positioning between treatment cycles. No energy is delivered during re-positioning.

 Treatment of 45 cm vein length takes 3 to 5 minutes (seven treatment segments).

ELA Design and Mode of Action

- ELA Energy steam bubbles within vessel (blood) or vessel wall (water) depending on laser wave length
- Steam bubbles from laser tip can achieve temperatures as high as 1200° C at the tip to 48° C to the exterior of the vein wall
 - Steam bubbles causes collagen vein wall contraction and thrombosis

RECOVERY Trial: Conclusions

- ClosureFAST proved to be significantly superior to endovenous laser ablation when evaluating postprocedural recovery and patient QOL parameters
- Compared to laser ablation, treatment with ClosureFAST produced significantly
 - \checkmark Less painp < 0.0001 \checkmark Less bruisingp < 0.0001 \checkmark Less tendernessp = 0.0008 \checkmark Fewer adverse eventsp = 0.021 \checkmark Greater improvement in VCSS scores*p = 0.035 \checkmark Better quality of life*p = 0.045 \ast Out to 14 days

Endovascular Treatment (EVT) of Chronic Iliac Vein Obstruction *Objectives*

 Compare stent-related and clinical outcomes, results and complications of EVT in limbs with nonthrombotic iliac vein lesions (NIVL) and post-thrombotic syndrome (PTS)

NIVL = Nonthrombotic iliac vein lesion (NIVL/MTS)
PTS = Post-thrombotic syndrome

Neglen et al., J Vasc Surg, 2007: 979-990

EVT of Chronic Iliac Vein Obstruction Materials/Methods

*870 patients / 982 limbs Chronic symptoms (mean = 60 mos) ♦NIVL = 518, PTS = 464 limbs \bullet Follow-up (mean = 22 mos), 1-107 mos ♦IVUS

PTA / stenting

Neglan, et al., J Vasc Surg, 2007:979-990

EVT of Chronic Iliac Vein Obstruction Technical Results

- Technical success = 97%
- Post-op stent thrombosis (<30 d) = 1.5%</p>
- Primary, primary-assisted and secondary patency rates (6-years)
 - **79%**, 100%, 100% (NIVL)
 - 57%, 80%, 86% (PTS)
 - ISR (>50%) = 5%
 - 10% (PTS), 1% (NIVL)

Neglan et al., J Vasc Surg, 2007:979 -990

Technique: Endovascular Treatment of Chronic Iliac Vein Obstruction *Access via CFV if isolated iliac/caval dz Popliteal vein if thrombosed femoral V PTA / stent w / IVUS guidance !! Pressure gradient if equivocal lesion Wallstents or nitinol (14 mm - 18 mm) Wallstents preferred if CIV confluence (MTS)

May-Thurner (MTS) or Cockett's Syndrome

✤ 1851- Virchow sinistral (left-sided) DVT

- Dx in 2%-5% of pts w/ venous dz
- Right CIA/compresses the left CIV against the lumbar vertebrae
- 25% of asymptomatic pts > 50% stenosis
- ✤ 3rd 5th decade of life / women

May-Thurner Syndrome

What Can be Done by Endovascular Approach

iviount Sinai-A<mark>HEART</mark>

